ATAA-2005-4141

Verification of a Multiphysics Toolkit against the Magnetized Target Fusion Concept

Scott Thomas™
International Space Systems, Inc.
555 Wynn Drive, NW, Suite 440
Huntsville, Alabama 35816

Eric Perrell'
Caroline Liron
Robert Chiroux'

Jason Cassibry'
University of Alabama in Huntsville
Propulsion Research Center
Tech Hall, §234
Huntsville, Alabama 35899

Robert B. Adams'

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
NP10/Advanced Concepts Office
MSFC, AL 35812

ABSTRACT

In the spring of 2004 the Advanced Concepts team at MSFC embarked on an ambitious project to develop a suite
of modeling routines that would interact with one another. The tools would each numerically model a portion of any
advanced propulsion system. The tools were divided by physics categories, hence the name multiphysics toolset.
Currently most of the anticipated modeling tools have been created and integrated. Results are given in this paper
for both a quarter nozzle with chemically reacting flow and the interaction of two plasma jets representative of a
Magnetized Target Fusion device. The results have not been calibrated against real data as of yet, but this paper
demonstrates the current capability of the multiphysics tool and planned future enhancements

INTRODUCTION terms of time and cost to develop design routines for all

In the spring of 2002 the Advanced Concepts of the myriad advanced propulsion concepts suitable to
department at MSFC embarked on an ambitious project space exploration. When the Advanced Concepts team
to develop an integrated set of analytical tools for considered the list of propulsion concepts, from liquid
conceptual design of spacecraft. This project included propellant propulsion, to solar sails and from nuclear
development of a collaborative engineering thermal to fusion propulsion they discovered that a
environment to integrate the efforts of teams of common set of physics routines should be able to model
engineers and scientists designing these spacecraft. It the physical processes of most of the propulsion
quickly became apparent that it would be prohibitive in ~ concepts. The sections below define each of the
. component models and integration of the components in
Systems Engineer, member AIAA. the CEE to yield a multiphysics model of the propulsion

system in question.

Senior Space Systems Engineer.

COMPONENT MODELS
'Systems Engineer, Advanced Propulsion Integration
Technologies, senior member AIAA The main routines to integrate into the logic flow
were a fluids routine, a solid structural routine, and a
Copyright ©2005 by ATAA. Published by the solid thermal conduction routine. The routines used to
American Institute of Aeronautics and Astronautics,
Inc., with permission. 1

American Institute of Aeronautics and Astronautics

fill these needs are detailed below. The Preliminary
Analysis of Revolutionary Exploration Concepts
(PARSEC) collaborative engineering environment
(CEE) was used to apply the logic flow to the quarter-
nozzle analysis. The input and output described in this
section are restricted to those necessary for the
integration of the component models. Input and output
specific to a single component will be detailed in that
component’s section of this report.

First, a fluids code was selected by the user,
choosing between the continuum fluid mechanics code,
HYP, or the particle-in-cell (PIC) code. In the quarter-
nozzle analysis, the HYP code was used. The HYP

code read in the fluids grid and wall surface temperature-

as integration input. The code then ran until a user-
specified tolerance was reached or a maximum number
of component iterations was completed. This was done
to allow the fluids code to approach steady-state output.
The HYP code integration output was the heat flux at
the wall and the pressure at the wall.

Second, the solid thermal conduction code read in
the solid grid and the heat flux at the wall from the HYP
code and calculated the resulting nodal temperatures.
The thermal conduction code output was a new wall
surface temperature distribution.

Next, the structures code read in the solid grid and
the pressure at the wall. A resulting solid deformation
was calculated, and output as a new solid grid.

Finally, the new solid grid was read in to a grid
resizing component. This component calculated the
deformation of the new solid grid with respect to the old
solid grid. This displacement was then equally
distributed between the nodes of the old fluid grid to
create a new fluid grid the aligned with the deformed
solid. This simple algorithm applied either a expansion
or .contraction of the fluid based on the solid
deformation.

Integrating these tools into the multiphysics toolkit
in the PARSEC CEE are global variables and processes.
The global variables are available to import into any of
the processes for logic control, decision making, exit
criteria, etc. The global variables for the multiphysics
toolkit are shown in Figure 1.

2

e Value Units []
i [FluidsSelection 1 . 1
| [Grid_output Cantinue Lo
| [Hyplterations {500
| HypTolerance 0.1 P
SalidBoundFace 3 N
| 1 f
25 L
0.001

Figure 1 Global Variables

The use of these global variables will be explained
in detail as each process in the logic flow is described.

The overall toolkit in the PARSEC CEE is shown in
Figure 2.

Figure 2 Multiphysics Toolkit

Each box in the toolkit represents a process
available to perform a discipline analysis. All the
processes currently available in this multiphysics toolkit
are also shown in the process window as seen in Figure

3.

American Institute of Aeronautics and Astronautics

| [FluidsSelection
| |Hyp
RIC
Solid Conduction
| |Structural FEM
|Grid
IsDane:.
| (TotincCir
1PCS Viewer

Figure 3 Process Window

Any process may be selected and launched
separately using the “Step” button. Launching an entire
global loop simply requires selecting the process with
which to begin and pressing the “Run” button.

The proper logic flow for this layout begins in the
top left corner of Figure 2 and progresses in a counter-
clockwise fashion. The FluidsSelection process (Figure
4) uses the FluidsSelection global variable in a
comparator. The comparator lets the user set an upper
and lower bound. It then compares the input to those
bounds and outputs either LessThan, Between, or
GreaterThan as an exit code. This exit code then
allows the user to direct the logic flow in the proper
direction.

Figure 4 FluidsSelection Process

For the quarter-nozzle analysis, the FluidsSelection
value of 1 causes control to pass to HYP (Figure 5)

instead of using a value of 2, which would have passed
control to PIC (Figure 6) instead.

Figure 5 HYP Process

Figure 6 PIC Process

HYP uses the Hyplterations global variable as input to
determine how many component iterations to run per
global iteration. HypTolerance is a placeholder for
future use that will allow HYP to relinquish control
when the maximum residual reaches the desired
threshold. HYP also uses SolidBoundFace as input to
determine which boundary will communicate with the
solid processes.

Both the HYP and PIC process, once completed,
pass control to the Solid Conduction process (Figure
7). This process also uses SolidBoundFace as input to
determine communication requirements. It then passes
control to the structures process (Figure 8).

American Institute of Aeronautics and Astronautics

Figure 7 Solid Conduction Process

Figure 8 Structural FEM Process

The structures process also uses SolidBoundFace as
input to determine communication requirements. It then
passes control to the grid process (Figure 9). The grid
process uses TotTolerance as input to determine if the
solid deformation is below the desired threshold. The
grid process uses Grid_output as output to alert the user
to the status of the grid. If the grid has converged, the
output will be “Converged” and control will pass back
to the screen, ending the global iterations. Otherwise,
the output will be “Continue” and control will pass to
another comparator, IsDone (Figure 10).

Figure 9 Grid Process

Figure 10 IsDone Process

The IsDone process uses TotIncCtr and
TotTimesToRun as input. If the value of TotIncCtr is
equal to or greater than TotTimesToRun, then control
passes back to the screen. Otherwise, control is passed
to the TotIncCtr process (Figure 11).

Figure 11 TotIncCtr Process

This process takes the TotIncCtr global variable and
increments its value by one. Control is then passed
back to the FluidsSelection process, and the next global
iteration has begun.

This global iteration logic flow will continue until
one of the exit criteria are met and control is not passed
to the next process. The user can interrupt this flow by
using the “Stop” button. The current process will be
terminated and control will be passed back to the
screen.

All the above processes output data in the simple
legacy Visualization Toolkit (VTK) file format'. The
PARSEC Construction Set (PCS) was written using
VTK routines. The PCS Viewer process (Figure 12),
while currently not in the logic flow loop, allows easy
viewing of the results.

Figure 12 PCS Viewer Process

Future modification will allow this process to be
placed in the logic loop, thus allowing real-time viewing
of the results for each global iteration.

Continuum Fluid Mechanics (HYP)

American Institute of Aeronautics and Astronautics

Rick

Thermal Conduction

The solid thermal conduction code is based on a
structured finite difference scheme that is first order
accurate in time and second order accurate in space.
The formulation is based on natural coordinates in a
computational domain. The node coordinates may then
be transformed to the physical space using a proper
transformation technique. The formulation allows for
transient, anisotropic analysis through time-step and
spatial thermal conductivity input. A heat flux can be
applied at each surface node, or an equal heat flux can
be applied to any surface. At present, the density and
specific heat are a single input, not allowing for either
to be a function of temperature.

After reading the inputs, the spatial thermal
diffusivity2 is calculated according to Equation 1):

L)
axi
poc,
Then the spatial Fourier number is calculated
according to Equation 2):

Fo = % @)

xi 2
d.

X

The node temperature at the current time step is
calculated explicitly from the surrounding node
temperatures at the previous time step. The formulae®
for calculation differs for the interior nodes (Equation
(3))), surface nodes (Equation 4)), edge nodes
(Equation 5)), and corner nodes (Equation 6)).

T,G, j,k) = Fo (T, +1, j, k) + T, =1, j,k)) +
Fo,,(T,(i, j+ LK)+ T,(i, j - LK)+

Fo,, (TG, jk+D+T,(, j.k -1)+
(1-2(Fo,, + Fo,, + Fo_,))*T,(, j,k)

3)

T,G, j.k) = 2Fon.[q,,. G, j,k)%nl(i +1, j,k)] + @)
Fo,, (T, G, j + LK)+ T, G, j—1,k))+
Fo, (TG, j,k +D+T,G, jk—1)+

(1-2(Fo,, + Fo,, + Fo,,,))*T, (i, j,k)

Tz(i»j»k) = 2F0xi(qﬁ(i)j)k)%+n(i+l»j7k)J+ (5))

xi

dem

2F0,,,,(q,,.,(i,j,k) +T,(, j+1,k))+

Fo,,(I,(i, j,k + D) +T,Gi, j,k -1))+
(1-2(Fo,, + Fo,,, + Fo,,,))*T,(i, j,k)

eta

TG0, J, k)= 2F0,.—[q,.v(i, j,k)%”}(i +1, j'k)J+ (6))

xi

dzm

2F0,,a(qm(i, Jik)=+T,3, j +1,k)] +

eta

2 +T,G, j,k+1) |+
kltm

2F0ula (qula (l’ j’ k)

(1-2(Fo,, + Fo,, + Fo_,))*T,(i, j,k)

The stability criteria can easily be seen in the last
term of Equation 3). For unconditional stability, this
last term must be positive, which requires the sum of the
directional Fourier numbers be less than %. Also note
that Equation 4) is for the lower xi-surface, and that 5
similar equations are used for the remaining surfaces.
Similarly, Equation 5) is for the edge that shares the
lower xi-surface and the lower eta-surface, with 11
similar equations for the remaining edges. Finally,
Equation 6) is for the corner that shares the lower xi-, -
eta-, and zeta-surfaces, with 7 similar equations for the
remaining corners.

These equations are iterated through according to
the input time-step, and the resulting nodal temperatures
are written to the output file.

Structures

The initial calculation within the structures code is
to determine the transformation matrix for a triangular
element oriented arbitrarily in space. This technique is
drawn heavily from Zienkiewicz'. The following
development assumes the three nodes are oriented
counterclockwise, positive outward, within the element
and located based on Cartesian coordinates globally
common to all elements. The resulting transformation
matrix will be used to orient the element into a common
plane with all other transformed elements to ensure
accurate compilation of the global stiffness matrix.

The first step is to calculate the component distances
between the first and second nodes. The vector’s scalar
length between nodes one and two is calculated. The
components are then normalized. This produces the

[PENTEET)

direction cosines for the “local” coordinate system’s “x

American Institute of Aeronautics and Astronautics

axis and defines that axis along the node 1-2 side of the
element.

Xy=X,-X,
2.1.1
Y,=Y,-Y
2.1.2
Zy=2,-2,
2.1.3
L, = X21 +Y221 +2221
2.14
X
L =—*2 2.15
L21
A
L,
2.1.6
Z
N, =—% 2.1.7
L21

Having determined the “x-prime” axis direction
cosines a similar process can be applied to the node 1-3
side of the element. It is important to note that this is
not typically the “local” coordinate system’s “y” axis,
but it does define another vector.

Xy=X,-X,
2.1.8

Y, =Y,-Y
2.19

Zy,=2,-2,
2.1.10

With two vectors multiplication of the first into the
second produces a third vector, normal to both. This
resulting vector does constitute the “local” coordinate
“Z” axis and along with it the “Z” axis direction cosines
can be determined.

XZ =Y, 0Zy; Y, 02y,
2.1.11

6

YZ=Z7, X, —-Z;; X,
2.1.12

ZZ=X, oY — X5 oY),
2.1.13

L, =VXZ* +YZ* + 7Z*

2.1.14
XZ
L ===
L3l
2.1.15
YZ
M, ==
L31
2.1.16
7z
N, =22
L31
2.1.17

At this point the “local” coordinate “x” and “z” axes
have been defined, along with the normalized
components that define their direction cosines.
Multiplication of the “z” vector to the “x” vector, or
more specifically the direction cosines of “z” into “x”,
the “Local” coordinate “y” axis is defined along with its
direction cosines.

Ly:Mz.Nx—Nz.Mx
2.1.18

M,=N,eL ~L oN,
2.1.19

N, =L oM —-M, oL,
2.1.20

This process is repeated for each element in
succession and the direction cosine matrix, and its
transpose, for each element is used in various locations
throughout the “MPTFEM” code.

American Institute of Aeronautics and Astronautics

L M, N,
[DcMm]=|L, M, N,
LZ MZ NZ
2.1.21
L L L
[DeM] =\M, M, M,
N, N, N,
2.1.22

After assembling the transformation matrix for each
element the coordinates of each element’s nodes will
need to be transformed to that elements “local”
coordinate system. This process first translates the
element so as to define node one at the local origin.
The transformation matrix can then be used to rotate the
element such that its node 1-2 edge define its local “x”
axis and the element as a whole lies in the “local”
coordinate “xy” plane.

Translation of the element is accomplished by
setting node one at the origin and subtracting its
coordinates from the other two nodes. The translation
of node three is shown as an example.

N3,=X,-X,
2.2.1

N3, =Y, -V,
222

N3,=2Z,-2Z,
223

Assembling the node translated coordinates in
matrix form and multiplying it into the transpose of the
transformation matrix produce a matrix of “local” nodal

swaps node three and one for the area calculation and
restores them after its completion.

N1, -N2,
SLOPE=—2>——2
N1,-N2,
23.1
|~ SLOPE N3, + N3, + SLOPE » N
HEIGHT =
| V1+ SLOPE?
232

BASE=\|(N1, - N2,)’ +(N1, - N2,]
233

AREA = % ¢ BASE ¢ HEIGHT

234

The elasticity matrix for a 3D element can be easily
drawn from reference material.

(1l upw 0 0 O

ulu O 0 0

“ul O 0 0
(Esp]=ESAREAST g g o 124 o

(- 42) 2]
0ooo o —# o
2
000 0 o ZH
i 2

24.1

Where: E = Modulus of elasticity
AREA = Element Area
T= Element Thickness

oQrdinates. ;4" J u = Poisspn’§ Ratio
Rfmefyr N1, | N1, N1, N1 | [L, P £
N2, N 2; N 2'2 =|N2, N2, N2 |X|M, T gradényt matrix for a triangular plate element,
Narbi%rily orjentgd in three-dimensional space, is

N./g's’Sumljr\{vg3 the c{gn?l’é hal Q{:g’ﬁ trar{\s]%?meYO?)ﬂl
local coordinate system determination of the element’s
area is fairly straightforward. The algorithm within the
MPTFEM code was written for a triangular element in
an arbitrary orientation and has been left intact for
future applications. For an arbitrary orientation if the
“x” coordinates of nodes one and two are identical a
“divide by zero” error would develop during the slope
calculation. In this case the program automatically

7

&ssentidlly a twoidimensional matrix that is expanded to
accommodate a three dimensional structure. Although
the gradient matrix is calculated based on an element’s
“local” coordinates, and thus out of plane terms are
zero, the expanded gradient matrix has been left intact
for future development. The purpose of the gradient
matrix is to relate nodes displacements to strains. The
gradient matrix combined with the elasticity matrix
generates an element’s stiffness matrix.

American Institute of Aeronautics and Astronautics

Bl
2e AREA
2.5.1
(N2, - N3, 0 0
0 N3, -N2,
0 0
N3,- N2, N2,-N3,
0 0
0 0

0 N3,-NI,

0 0

0 0 0
0

N2, - N3,

N3,- N2,

0
0

0
0

Once the element’s elasticity matrix and gradient
matrix are determined calculation of the element
stiffness matrix is straightforward. This results in a
12x12 matrix.

[Esam ' |=[B]" o [ESM]e[B]
2.6.1

Due to thé gradient matrix having been formed from
“local”, transformed nodal coordinates the resulting
element stiffness matrix was defined in the “local”
coordinate system as well. Use of the previously
determined transformation matrix for the element allows
transformation of the element stiffness matrix back into
global coordinates. It is important to note that the
element stiffness matrix is a 12x12 matrix while the
transformation matrix is a 3x3 matrix. This can be
overcome by repeating the transformation matrix four
times. :

LLM,N, 0 0 0 0 0 0 0
LLM,N, 0 0 0 0 0 0 0
L M,N, O O 00 0 0 0
0 0 0OLM,N, 0O 0O
0 0 0L M, N, 0O 00
], =|® 0 O LM N 0O 00
00 000 0L M,N,?O
00 00O 0L M,N,O
00 000 0L M,N,O0
00 000 O0O0O0 0L
00 000 O0O0UO0 0L,
(00 000 O0O0 O O°L,
2.6.1

After expanding the transformation matrix the
stiffness matrix can be transformed easily.

[EStM]= [T]f2x12 4 [EStM '] ¢ [T]12x12
2.6.2

N1, - N3,

NI, -N3, N3, - NI,

O O © O © O o

R XX o o

8

In order to assemble the global stiffness matrix from
the element stiffness matrices it is necessary to enter the
stiffness terms in the proper locations. For this type of
element each node has three degrees of freedom. With
this in mind a model consisting of 30 nodes would have

90 Yegred¥]of'ﬁl%gdom._ Phe purpos% of thd Ql al
stiffness matrfk is to¥éfind'the relat?onshjﬁs%gt een
eath degree of freedom. OFor instanfe, the&RbBal
stiffness M2trix Moulilhav¥ 2erm to Yelate the "

Niotidi of node one to the “z” Md§ion\oE,n6de 8dven,
Napd s3forth. More specificallyNPa tridhg@l4r 8lement is

»

<

~

defined by nodes 1, 7 and 9, in counterclockwise order,
it would be necessary to relate degrees of freedom 1, 2,
3,19, 20, 21, 25, 26 and 27 to each other. The
interaction between these nine degrees of freedom
generate 81 stiffness relationship terms to be added to
the global stiffness matrix in the proper locations.
Since combinations of these nodes appear in other
elements it would not be unusual for an entry to be
added to a previously entered relationship in the global
stiffness matrix. The example equation shown
demonstrates the entry to the global stiffness matrix for
the interaction noted above, the “x”” motion of node one
to the “z” motion of node seven.

BIGK[1,21]= BIGK[1,21]+ EStM[1.9]
2.8.1
After completing an element’s entries to the global
stiffness matrix the next element and its associated
nodes are read and the above logic is repeated until all
entries to the global stiffness matrix are complete.

o fAfter assembly of the global stiffness matrix it must
be modified to account for any applied constraints.
C80n straints to the stiffness matrix would simulate
18c4tions where the model is fixed. Constraints are
aBp ied to degrees of freedom as opposed to nodes as
ndt pll degrees of freedom at a node are constrained.
For finstance a fixed node would have its x, y and z
ngotions constrained while a sliding node might have
ogly its z motion constrained. Each degree of freedom
that/is constrained must generate a modification to the

obal stiffness matrix that is covered in two parts. As
arrexample we will assume the “z”” motion of node five
11% constrained.

First the diagonal within the global stiffness matrix
is set to unity.

BIGK[15,15]=1.0
2.9.1

Next the column and row terms including this
degree of freedom are zeroed out. This degree of

American Institute of Aeronautics and Astronautics

freedom can have no affect on other degrees of freedom
because it is locked.

BIGK[15,(ALL)}=0.0
2.9.2

And:

BIGK[(ALL)15]=0.0
293

A simple but important step is to form the loads
array. This array will be needed along with the
assembled and modified global stiffness matrix to
produce the primary result, the deflection matrix. The
input file provides a series of entries to define any load
to be applied to each degree of freedom. For
illustration we will assume that a load of 250 Ibf is
applied, in the negative “z” direction, on node twenty.

R[60]=-250.0
2.10.1

The solution that is produced is a direct result of the
loads applied the structure, which is represented by its
modified stiffness matrix. In actuality the equation that
is used to determine the solution is normally stated with
the loads array as the solution of the multiplication of
the global stiffness matrix to the displacement array.

[GlobalStiffnessMatrix]x [DiplacementArrqm]cF LaadsAn

2.11.1

Which in terms of this program would be stated:

[BIGK |x[DEF]=[R]
2.11.2

In order to determine the displacement matrix
“[DEF]” the stiffness matrix must be inverted.

[DEF]=[BIGK]™ x[R]
2.11.3

It should be noted that inverting the stiffness matrix
for a large matrix is a problem requiring so much
bookkeeping that a computer algorithm is the only
practical method for doing so. Fortunately many
subroutines have already been written to perform this
operation. In this program such a routine is drawn from
McKinley?. The size of the stiffness matrix in this
program is 900 by 900 degrees of freedom. Compared

to larger commercially available finite element
programs this would be considered small.

The final step of the program is to determine the
state of stress in each element. The component matrices
necessary to calculate the state of stress have already
been determined. The matrices include the element
elasticity matrix, the gradient matrix and the
displacement matrix. The element stress is calculated in
the local element system therefore the elasticity matrix
is transformed into local coordinates, the gradient
matrix is defined in local coordinates and the
displacement matrix, recently solved, is transformed
into local coordinates. The result produces the stress
state in the local element coordinate system.

[a'J;[fb;M'Jx [B]x |DEF|

Particle in Cell
Jason

c=0As. o

RESULTS
uarter-Nozzle, Liquid Propellant Engine
The quarter-nozzle, liquid propellant engine analysis
was performed using the PARSEC CEE. The geometry
for the quarter-nozzle analysis can be seen in Figure
13, The wall geometry can be seen in Figure 14. The
seen in Figure 15.

Figure 13 Quarter-nozzle Geometry

American Institute of Aeronautics and Astronautics

Figure 14 Quarter-nozzle Wall Geometry

Figure 15 Quarter-nozzle Fluid Geometry

Note that the fluid geometry has been set up with a
central cathode for future use with electromagnetic
effects.

The analysis run in the PARSEC CEE was
comprised of 32 global iterations, with 250 iterations of
HYP per global iteration. The solid wall properties
used were for typical steel due to the author’s
familiarity with it’s response. The wall modulus of
elasticity was 205 GPa, the Poisson’s ratio was 0.30, the
density was 7870 kg/m’, the specific heat was 599 J/(kg
K), the thermal conductivity in all three axes was 51.9
W/(m K), and the initial wall temperature was 300K.
The input fluid temperature was 600K, the input fluid
pressure was 1013250 Pa (10 atm), and the input fluid
velocity was 83 m/s in the axial direction.

The resulting temperature for the quarter-nozzle can
be seen in Figure 16. Note that due to the relatively
high thermal conductivity of the wall and running the
analysis to a quasi-steady state solution, it appears as
nearly equal temperature in Figure 16. The temperature
for the wall alone can be seen in Figure 17, which more
clearly displays the temperature contour. The
temperature for the fluid can be seen in Figure 18,
which clearly shows the reduction in temperature
through the nozzle due to expansion.

Figure 16 Quarter-nozzle Temperature

Figure 17 Quarter-nozzle Wall Temperature

10 :
American Institute of Aeronautics and Astronautics

2 Incropera, Frank P., Dewitt, David P., Fundamentals
of Heat and Mass Transfer, Fourth Ed., John Wiley &
Sons, 1996.

3 Chung, T.J., Computational Fluid Dynamics, First
Ed., Cambridge University Press, 2002.

Figure 18 Quarter-nozzle Fluid Temperature

Future analysis plans are to modify the wall material to
use a proper nozzle material in place of steel. The
chemical capabilities of the HYP code will be used to
model combustion, allowing output of species
concentrations in the fluid flow. The PCS Viewer will
be updated to allow displaying output of vector fields to
better report the fluid analysis.

MTF Jet Impingement
Rick

CONCLUSIONS/FUTURE WORK
The results above demonstrate the power and
capability of the multiphysics approach. Considerable
effort has been expended to develop this toolset.
Currently the multiphysics team is at the early stages of
integration of the disparate physics modules. Future
efforts include validation and verification of the toolset
against experimental and other computational data;.
Development of post processing routines to calculate
net performance is required to integrate the
multiphysics results with the design tools for other
vehicle subsystems. Finally development of optics,
neutronics, dynamic structures, and incompressible flow
modules are necessary to expand the capability of the

multiphysics tool to other propulsion systems.

! The Visualization Toolkit is open-source data

visualization software. Contact Kitware at
www.kitware.com for more information.

11
American Institute of Aeronautics and Astronautics

